Addition Reactions of tert-Butylmercury Iodide with **Electronegatively Substituted Alkenes: Three- and** Four-Component Radical Condensations Based on Control by Polar Effects¹

Glen A. Russell,* Chaozhong Li, and Ping Chen

Department of Chemistry, Iowa State University Ames, Iowa 50011

Received November 4, 1994

Multicomponent free radical condensations often suffer from a lack of selectivity. We report a group of three- and fourcomponent condensations where selectivity is achieved by utilizing reactions with important polar contributions and by conducting the condensations in a two-stage manner.

Reactions of t-BuHgI in Me2SO with electron-deficient alkenes, e.g., CH_2 =CH(EWG), with EWG = CO₂R, COR, CN, SO_2Ph , or $P(O)(OEt)_2$, occur readily in the dark at room temperature in the presence of I⁻ to yield initially the 1:1 adducts observable by ¹H NMR in Me₂SO- d_6 , reaction 1.² In the

t-BuHgI + CH₂=CH(EWG)
$$\xrightarrow{I^-}_{Me_2SO}$$

t-BuCH₂CH(EWG)HgI
a, EWG = CO₂Me
b, EWG = SO₂Ph
c, EWG = P(O)(OEt)₂
d, EWG = CO₂CH₂CH=CH₂
f, EWG = CO₂CH₂CH=CHMe
(1)

presence of NH₄I, the initial adducts with the exception of 1c are protonolized to give the reductive alkylation products 2a, Table 1. Electrophilic substitution in 1 in the presence of excess

t-BuCH₂CH(Y)(EWG)
a, Y = H
b, Y = I
c, Y = CH₂N(CH₂)₅
d, Y = (E)-CH=CHPh
h, Y = SePh

$$t$$
-BuCH₂CH(Y)(EWG)
e, Y = CH₂CH=CH₂CH=CH₂CH=CH₂CH=CH₂CH=CHPh
h, Y = SePh

 I^- also occurs readily with I_2 or NBS (to yield 2b) or with iminium cations such as $CH_2=N(CH_2)_5^+$ (to yield 2c).

Reaction 1 occurs more rapidly with sunlamp irradiation, while dark reactions are inhibited for days by 10 mol % (t-Bu)₂NO[•]. The dark reactions involve thermal initiation by t-Bu[•] formation, possibly from t-BuHgI₂⁻ or (t-Bu)₂Hg, followed by facile chain-propagating attack of the adduct radicals [t-BuCH₂-CH(EWG)[•]] on t-BuHgI₂^{-.3} Electron transfer to form t-BuCH₂- $CH(EWG)^{-}$ does not occur since 1 is also formed in the presence of 10 mol % D₂O or in some cases in the presence of 1 M NH₄⁺. The high reactivity of t-BuHgI₂⁻ toward electrophilic radicals may involve a transition state in which incipient electron transfer leads in a concerted fashion to the ate complex of 1 and t-Bu• in a formally S_H2 substitution on Hg. The iodidepromoted reactions also are observed for t-BuHgCl but not for $(t-Bu)_2$ Hg. In the absence of added I⁻, no significant dark

reactions are observed for t-BuHgI or (t-Bu)2Hg, while photolysis with CH2=CHCO2Me or CH2=CHCN leads to a mixture of products derived from radical-radical interactions including oligomers.4

The adduct 1 can be utilized without isolation in further photostimulated free radical chain reactions to form products of three- or four-component condensations. Table 1 summarizes some photostimulated reactions of 1a-e utilizing previously developed reactions of organomercurials with (E)-PhCH=CHI (vinyl substitution with retention),⁵ CH₂=CHCH₂SPh (allylic substitution),^{6,7} and Me₂C=NO₂Li (S_{RN}1 alkylation)⁸ to form 2d-f. Although reactions with disulfides occur readily with alkylmercury halides via steps 2 and 3,9 electrophilic radicals

$$\mathbf{R}^{\bullet} + \mathbf{PhSSPh} \rightarrow \mathbf{RSPh} + \mathbf{PhS}^{\bullet} \tag{2}$$

$$PhS^{\bullet} + RHgI \rightarrow PhSHgI + R^{\bullet}$$
 (3)

(e.g., PhCOCH₂[•]) are very unreactive toward disulfides.¹⁰ Thus, 1a gives no significant yield of 2g with dialkyl or diaryl disulfides, although the more reactive PhSeSePh⁹ gives a good yield of 2h. The electronegative radicals generated from 1a - ealso add readily to electron-rich alkenes. However, in the absence of any additional reagent, chain reactions between 1 and the alkene are not feasible. Disulfides, with their low reactivity toward electrophilic radicals but high reactivity toward nucleophilic radicals, allow a chain reaction to occur, thereby converting 1 to 3 for alkenes such as CH₂=CHOEt, CH₂=CHBu, and CH_2 =CHO₂CCH₃. Yields in the range of 80% based on

starting CH₂=CHCO₂Me are observed in these four-component condensations. With use of preformed 1, excellent yields of $2d-f_{th}$ or 3 can be achieved with *t*-BuHgI and CH₂=CH(EWG) in a 1:1 ratio. Photolysis of mixtures of t-BuHgI and CH2=CH-(EWG) with 4 equiv of the other components required to form 2 or 3 results in a variety of products since the relative reactivities toward t-Bu• are PHSeSePh (~8000):CH2=CHCO2-Et (80):CH₂=CHP(O)(OEt)₂ (10):PhSSPh (43):(E)-PhCH=CHI $(1.0):CH_2 = CHCH_2SPh (0.5):Me_2C = NO_2Li (0.2).^{6.9}$

Styrene, CH2=CHSPh, and 4-vinylpyridine in the presence of PhSSPh fail to form products analogous to 3. This is perhaps not surprising because the adduct radicals from these alkenes are quite unreactive toward PhSSPh.¹¹ However, surprisingly, in the presence of these alkenes good yields of t-BuCH₂CH-(SPh)CO₂Me (2g) are now observed (Table 1), although in their

(6) Russell, G. A.; Ngoviwatchai, P.; Wu, Y. W. J. Am. Chem. Soc. 1989, 111, 4921.

⁽¹⁾ Electron Transfer Processes. 58. (2) The mercurials 1 will slowly undergo comproportionation to form $[t-BuCH_2CH(EWG)]_2Hg$. With EWG = CN or CO₂Me, the diorganomer-curial is formed in nearly quantitative yield in a reaction accelerated by hv.

⁽³⁾ Russell, G. A.; Hu, S. S.; Herron, S.; Baik, W.; Ngoviwatchai, P.; Jiang, W.; Nebgen, M.; Wu, Y.-W. J. Phys. Org. Chem. **1988**, 1, 299. K_e is ~1 M⁻¹ for the complexation of I⁻ with *t*-BuHgI at 25 °C in Me₂SO.

⁽⁴⁾ The localized adduct radicals with EWG = SO_2Ph or $P(O)(OEt)_2$ will displace t-Bu* from t-BuHgCl or t-BuHgI to give excellent yields of 1 in photostimulated reactions; (t-Bu)2Hg/hv again gives a mixture of products with these substrates. Russell, G. A.; Jiang, W.; Hu, S. S.; Khanna, R. K. J. Org. Chem. 1986, 51, 5498.

⁽⁵⁾ Russell, G. A.; Ngoviwatchai, P. J. Org. Chem. 1989, 54, 1836.

⁽⁷⁾ Allyl bromide is ineffective because of its conversion to allyl iodide, (1) Allyl bromide is ineffective because of its conversion to allyl iodide, which readily undergoes iodine atom transfer with radicals.⁶ However, in PhH or Me₂SO solution, mixtures of *t*-BuHgCl, allyl bromide, and CH₂=CHCN or CH₂-CHCO₂Et give good yields of *t*-BuCH₂CH(EWG)-CH₂CH=CH₂ upon sunlamp irradiation.
(8) Russell, G. A.; Hershberger, J.; Owens, K. J. Am. Chem. Soc. **1979**, 101, 1312. Russell, G. A.; Khanna, R. K. Tetrahedron **1985**, 41, 4133.
(9) Russell, G. A.; Ngoviwatchai, P.; Tashtoush, H. I.; Pla-Dalmau, A.; Khanna, R. K. J. Am. Chem. Soc. **1988**, 110, 3530.
(10) Russell G. A.; Kusari, S. V. J. Ore. Chem. **1993**, 58, 2678.

⁽¹⁰⁾ Russell, G. A.; Kulkarni, S. V. J. Org. Chem. **1993**, 58, 2678. (11) Polystyrenyl radical reacts with PhSSPh with a rate constant of <10 L/mol-s at 60 °C. Pierson, R. M.; Costanza, A. M.; Weinstein, A. H. J. Polym. Sci. 1955, 16, 471.

Table 1.	Reactions	of CH	=CH(EWG) in	Me ₂ SO ^{a,b}
Lavic I.	Reactions	or cm		, ш	MC200

EWG ^a	t-BuHgI (equiv)	reagent (equiv), conditions ^b	product (yield, %) ^c
CO ₂ Me	1.2	KI (2), 1 h	1a (96)
CO ₂ Me	1.2	NH_4I (4), 30 min	2a (100)
CO ₂ All	1.2	KI (3), 20 min	1b (91)
CO ₂ All	2.0	NH ₄ I (4), 30 min	2a (100)
SO ₂ Ph	2.0	$NH_4I(2), 2h$	1c (100)
CN	1.2	KI (3), 1 h	$1e (94)^d$
CN	Ae	NBS (2), 12 h	2b (77)
CO ₂ Me	Ae	$I_2(2), 12 h$	2b (77)
CO ₂ Me	Ae	I ₂ (2), 12 H	2b (95)
CO ₂ Me	Ae	$CH_2 = N(CH_2)_5^+$ (4), 6 h	2c (80)
CO_2Me	Ae	$(E)-PhCH=CHI (5), h\nu, 6 h$	2d (65)
CO ₂ Me	Ae	CH_2 =CHCH ₂ SPh (5), $h\nu$, 1 h	2e (63)
CO ₂ Me	Ae	$Me_2C=NO_2Li(2), h\nu, 1.5 h$	2f (68)
SO_2Ph	A ^f	(E)-PhCH=CHI (5), $h\nu$, 4 h	2d (55)
Р	A ^f	$Me_2C=NO_2Li$ (5), $h\nu$, 4 h	2f (67)
CO ₂ Me	Ae	PhSSPh (2), $h\nu$, 1 h	2g (not detected) ^g
CO ₂ Me	Ae	CH_2 =CHOEt (5), PhSSPh (1.5), $h\nu$, 1 h	$3a (82)^{h}$
CO ₂ Me	A ^e	CH_2 =CHBu (5), PhSSPh (1.5), $h\nu$, 1 h	3b (87) ^h
CO ₂ Me	A ^e	CH ₂ =CHO ₂ CCH ₃ (5), PhSSPh (1.5), hv, 1 h	3c (70) ^{<i>h</i>}
CO ₂ Me	Ae	CH_2 =CHPh (5), PhSSPh (2), $h\nu$, 1 h	2g (77)
CO ₂ All	Ae	CH_2 =CHCH ₂ SPh (3), hv , 5 h	2e (57)
CO ₂ All	Ae	(E)-PhCH=CHI (5), $h\nu$, 1.5 h	2d (45)
CO ₂ All	Ae	$Me_2C=NO_2Li$ (4), $h\nu$, 5 h	2f (67)
CO ₂ All	A ^e	PhSeSePh (2), $h\nu$, 5 h	2h (75)
CO ₂ All	A ^e	MeSSMe (2) , hv , 5 h	4a , $Y = SMe(62)$
CO ₂ All	Ae	PhSSPh (2), $h\nu$, 5 h	4a , $Y = SPh$ (65)

^a All = allyl, P = P(O)(OEt)₂. ^b 25 °C for dark reactions, 35-40 °C upon irradiation with a 275 W fluorescent sunlamp. ^c By ¹H NMR in Me₂SO-d₆ with PhCH₃ as an internal standard. All yields are based on starting 0.1 M CH₂=CH(EWG). ^d 6% of CH₂=CHCN converted to $[t-BuCH_2CH(CN)]_2Hg.$ Condition A: 1.1–1.2 equiv of t-BuHgI and 2–3 equiv of KI were first allowed to react in the dark for 1 h.^f The organomercurial 1 was prepared as in A but with sunlamp photolysis for 30 min. Photolysis for 17 h (with or without PhSSPh) forms t-BuCH₂CH₂CO₂Me (20-30%) and [t-BuCH₂CH(CO₂Me)]₂ (45-50%).^{c,h} h~1:1 mixture of diastereomers.

absence t-BuCH₂CH(CO₂Me)[•] fails to react with PhSSPh. These alkenes are also quite reactive toward PhS^{•.12} Possibly the reversible addition of PhS* to these alkenes now occurs in competition with reaction 3. This would lead to a situation where t-BuCH₂CH(CO₂Me)[•] would be formed (either photochemically or via reaction 3) in the presence of PhSCH₂CH- $(R)^{\bullet}$ (R = Ph, SPh, 4-pyridinyl). Disproportionation via reaction 4 could lead to the formation of t-BuCH₂CH(SPh)CO₂Me in a nonchain process. The mercurial derived from allyl acrylate

$$t-BuCH_{2}CH(CO_{2}Me)^{\bullet} + PhSCH_{2}CH(R)^{\bullet} \xrightarrow{R = Ph, SPh} t-BuCH_{2}CH(SPh)CO_{2}Me + CH_{2} = CHR (4)$$

(1e) reacts with 4 equiv of (E)-PhCH=CHI, CH₂=CHCH₂SPh, or $Me_2C=NO_2Li$ to give the uncyclized products 2d-f. However, upon photolysis with disulfides, the cyclized lactone 4a (Y = MeS, PhS) is formed cleanly as a single diastereomer.

From 1f, 4b is formed as a mixture of two diastereomers which upon chromatographic separation both demonstrate the trans structure by NOESY spectra (see supplementary material). The trans cyclized product is surprising in view of other radical cyclizations observed for 1,6-dienes.13,14

The rate of cyclization of the radicals t-BuCH2 CHC(O)XCH2-CH=CH₂ must increase from X = NH to O to NR" (R" = Ph, CH₂CH=CH₂). Thus, 4c (R'' = H) is not observed in the reaction of t-BuCH2CH(HgI)C(O)NHCH2CH=CH2 with Ph-SSPh, 2g being formed in low yield. However, similar reactions of the adduct mercurials from CH2=CHC(O)N(R")CH2-CH=CH₂ with R'' = Ph or CH₂CH=CH₂ yield only the trans diastereomers 4c (R' = H, Y = SPh). Moreover, with R'' =Ph, the cyclized products are formed from the reactions of the adduct mercurials with Et₃SiH (4c, R' = Y = H),¹⁵ BrCCl₃/I⁻⁻ (4c, R' = H, Y = I), or PhSeSePh (4c, R' = H, Y = SePh).¹⁶ Under similar conditions, cyclization is not observed for the radical derived from 1e. The adduct radicals formed from N-allylacrylamides in which the second amide hydrogen is substituted by Ph or allyl apparently exist in a conformation more conducive to cyclization than the unsubstituted amide or ester.

Acknowledgment. We are grateful for financial support provided by the National Science Foundation (CHE-9220639).

Supplementary Material Available: Spectroscopic data for 1, 4b, and all new compounds listed in Table 1 (11 pages). This material is contained in many libraries on microfiche, immediately follows this article in the microfilm version of the journal, can be ordered from the ACS, and can be downloaded from the Internet; see any current masthead page for ordering information and Internet access instructions.

JA943592S

⁽¹²⁾ Addition of PhS[•] and p-ClC₆H₂S[•] to styrene at 23 °C occurs with rate constants of 2.7 × 10⁷ and 5.2 × 10⁷ L/mol-s, respectively. In the addition of p-ClC₆H₄S^{*}, styrene is ~300 times as reactive as *i*-BuCH=CH₂. Ito, O.; Matsuda, M. J. Am. Chem. Soc. 1979, 101, 1815; 1982, 104, 1701.

⁽¹³⁾ Hanessian, S.; Léger, R. J. Am. Chem. Soc. 1992, 114, 3115. Ryu, I.; Kurihara, A.; Muraoka, H.; Tsunoi, S.; Kambe, N.; Sonoda, N. J. Org. Chem. 1994, 59, 7570.

⁽¹⁴⁾ For other examples of preferential radical cyclization to $trans - \alpha_{,\beta}$ -disubstituted γ -butyrolactones, see: Hanessian, S.; Di Fabio, R.; Marcoux, J.-F.; Prud'homme, M. J. Org. Chem. 1990, 55, 3436. (15) Russell, G. A.; Shi, B. Z. Tetrahedron Lett. 1994, 35, 3841.

⁽¹⁶⁾ A mixture of uncyclized and cyclized organomercurials is formed initially since in the presence of NH₄I about equal amounts of 2a and 4c (R'' = Ph, R' = H, Y = HgI) are formed.